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        ABSTRACT

New lengthy Monte Carlo simulations of the energy equation of
state of binary ionic mixture fluids in a uniform background  show
that deviations from the linear mixing rule are small,  positive, and
nearly constant as a function of Γ .  Deviations from linear mixing for
the Helmholtz free energy are positive and behave as lnΓ .
Quantitative results are obtained form the correction to the
thermonuclear reaction rate.

1. Introduction

In this paper we report results for very accurate numerical
simulations of the equation of state (EOS) of binary ionic strongly
coupled plasmas at strong coupling in the fluid phase.  These results
are needed for the determination of phase diagrams for  ionic
mixtures found in white dwarf star interiors, and to estimate the
enhancement of thermonuclear reactions due to ionic screening in
very dense stellar interiors.  Experimentally it will be possible in a
few years to also observe strongly coupled binary ionic mixtures of a
finite number of ions in Penning traps as has already happened with
the one component plasma (OCP).  At the present time, however, the
most detailed knowledge of properties of mixtures must come from
very long computer simulations, either Monte Carlo (MC) or



molecular dynamics (MD).  It has been known since 1977 from the
work of Hansen, Torrie, and Viellefosse1 who solved coupled Hyper-
Netted Chain (HNC) equations for ionic mixtures that the EOS of
mixtures is given with remarkable accuracy in terms of the EOS of
the OCP using the linear mixing rule for the excess Helmholtz free
energy, f = F/NkT:

fmix  =  x1fOCP(Γ1)  + x2fOCP(Γ2)  +  ∆f (1)

where  x1 and  x2  are the composition fractions by number; thus  x2
= N2/(N1 + N2) = 1 - x1 .  Differentiation with respect to temperature
gives a similar expression which applies to the excess internal
energy,   u =  U/NkT:

umix  =  x1uOCP(Γ1)  +  x2uOCP(Γ2)  +  ∆u (2)

and Γ 1 and Γ 2  are the usual coupling parameters:

Γ2 =  Z25/3Γe ,   Γ1 = Z15/3Γe

Γe = e2/akT , a = ((4π/3)Ne/V)-1/3, Ne = Z1N1 + Z2N2 ( 3 )

The OCP functions,  u and f,  are known to five figure accuracy from
earlier MC simulations2, and the data for strong coupling  (Γ ≥ 1) is
reproduced by convenient fitting functions.

The work presented here will be entirely for fluid ionic
mixtures;  results for solid phase mixtures will appear in a later
publication.  The fluid results for ∆u and ∆f in the HNC calculations
are positive for all values of the coupling parameters and on the
order of a few parts in 105 of u and f.  The HNC approximation,
however, is slightly inaccurate due to the neglect of the bridge
functions.  Thus complete information about these deviations for
linear mixing must come from MC or MD simulations that are
accurate to roughly one part in 105.  This numerical accuracy
requirement means that the MC runs have to be significantly longer
than any that have been reported so far.
   We will focus on results  of relatively small values of the
composition of the higher Z charge because this is needed for the
estimation of the screening function,  H(r)  =  βu(r) +  lng(r),  at r = 0
for the calculation of the enhancement of thermonuclear reactions in
the strongly coupled fluid phase of some stellar interiors3,4.  At r = 0
it can be shown that:



H(0) =  {F(N2 = l, Γ2, N - 2, Γ1)  -  F(N2 = 0, N, Γ1)}/NkT

=  [2fOCP(Γ)  -  f(22/3Γ)]  -  (∂/∂x)∆f(Z2 = 2, x , Γ1 = Γ)x -> 0 ( 4 )

In Eq.4 we use x2 = x.  The derivative term represents the deviation
from linear mixing, and is expected to be a very small correction to
linear mixing term shown above in squre brackets  The  estimation
of this term requires accurate MC results for Z2 = 2, and very small
values of x.  Computer time expense limits the size of the system that
can be simulated to about 1000 charges, so that about the best we
can do is N2 = 10 and N1 = 990, or x = .01.   However, with sufficiently
long MC runs to give the needed accuracy we can estimate the size of
this correction term.

2. OCP Results for HNC and MC

The HNC equation is a remarkably good approximation to the
OCP but not exact because of the neglect of the bridge functions.  It is
still useful to work with the HNC results, however, because of the
property of the HNC approximation that for each Γ  in addition to the
internal energy one also obtains the value of the Helmholtz free
energy1.   With the MC energy data one must obtain the Helmholtz
free energy by means of a temperature integration over several
values of Γ  starting with the onset of strong coupling at Γ  = 1:

Fex/NkT =  ∫1

Γ
 dΓ ′ ∆(Γ′)   +  Fex(Γ = 1)/NkT (5)

Results for HNC u and f  and MC results for u are shown in Table 1.
The MC results for U/NkT in Table 1 were done with N = 1000

particles and with 200 to 400 x 106 configurations so as to obtain
accuracy to at least the 4th decimal place.  The difference between
the MC and HNC results is due to the neglect of the bridge diagrams
in the HNC approximation.  This difference is very small at  Γ  = 1, and
is less than 1% even at Γ  = 160.   Both the MC and the HNC energy
results can be fitted conveniently with the form:

u  =   aΓ  + bΓ s  +  c (6)



Table 1,  HNC and  MC Energy Results for the OCP

Γ
HNC

U/NkT, F/NkT
MC

U / N k T

     1      -0.570455     -0.57205 ±   0.00005
     -0.436484

     25 / 3     -2.25491 ±   0.00010
     5      -3.732075     -3.75696 ±   0.00010

     -3.190834
   10      -7.935439     -7.99837 ±  0.00014

     -7.060678
   15    -12.21718   -12.31729 ±   0.00013

   -11.08607
   20     -16.53774   -16.67327 ±   0.00016

    -15.19177
10x25 / 3   -26.98179 ±   0.00022
   40     -33.99923   -34.25940 ±   0.00026

    -32.00113
20x25 / 3   -54.09648 ±   0.00034
   80     -69.26387   -69.72742 ±   0.00041

    -66.37279
 160    -140.15559 -141.03963 ±   0.00069

   -136.1453

which for the free energy leads to:

f  =   aΓ  + (1/s)bΓ s + clnΓ   +  d (7)

For the MC energies in Table 1  the fitting coefficients are a =
-.899126, b = .60712,  c = -.27998, and s = .321308 with a standard
deviation of σ = ± .00045.  This is  the most accurate fitting function
for the OCP energy at the present time.  Note that the standard
deviation quoted here is for the fit to the actual MC numbers in Table
1, and not the MC statistical errors.  These statistical errors increase
from ±  0.00005 at Γ  = 1 ( nine parts in 105)  to ±  0.00069 at Γ  160
(less that one part in 106).  It is necessary to have similar accuracy in
the MC  ionic mixture simulations in order to obtain realistic results
for ∆u  and ∆ f.   The fit given here for N = 1000 particles is distinctly
better than the previous best available fit in Ref. 2, a four term fit



with s = 1/3  for much shorter MC runs with N = 686,    which gave  σ
= ± 0.0019.

3. HNC and MC Binary Ionic Mixture Results

In order to obtain definitive results for deviations from linear
mixing as defined by Eqs. 1 and 2 from MC  it is necessary to have
equally accurate results for all three terms in Eq. 1 and to do all
three with the same number of particles (we use N = 1000) so as to
eliminate any 1/N dependence.  This is the reason for strange looking
entries in Table 1 such as Γ  =  25/3.   It is a mistake to obtain values
of uOCP for Γ 1  and Γ 2  from a fitting function to the  OCP energy data
unless that fitting function is a fit to OCP data for the same value of N
used in the mixture runs, i.e. N = N1  + N2.  In our work we have
whenever possible done  three  MC runs  for each mixture to obtain
∆u,  namely the MC energy of the actual ionic mixture and the OCP
results for Γ 1 and Γ 2.   Our fitting function to the OCP MC data in Table
1, is sufficiently accurate to deal with all mixtures.  We also obtained
ionic mixture results for the coupled HNC equations even though
these results are inevitably less exact than the enormously more

Table 2,  HNC and MC Mixture Results for Z2 = 2, x2 = .05

Γ1 HNC
umix, fm i x

HNC
∆u, ∆f

MC
um i x

MC
∆u

1 - .65283 +.00124 - .65488 +.00134
- .50533 +.00238    ± .00005    ± . .00006

5 -4 .19286 +.00113 -4 .22167 +.00134
-3 .61696 +.00429     ±  .00014     ±  .00019

1 0 -8 .87605 +.00115 -8 .94666 +.00087
-7 .95314 +.00508      ±  .00013     ±  .00019

2 0 -18 .44379 +.00112 -18 .59212 +.00077
-17 .03229 +.00587      ±  .00023     ± .0028

4 0 -37 .84426 +.00105
-35 .75743 +.00662

6 0 -57 .38566 +.00115
-54 .79354 +.00704

8 0 -76 .99767 +.00128
-73 .99449 +.00746

1 0 0 -96 .65425 +.00120
-93 .27965 +.00753



computer intensive MC results.   We obtained HNC free energy
mixture results using  Eq. 11 in Ref. 1.  The use of the HNC mixture
equations allows us to obtain a structure for the deviations from
linear mixing and to quickly map out the behaviour as a function of
the three parameters,  Z2,   x2,  and Γ 1.   Results for  Z2 = 2  and x2 =
.05 are given in Table 2.

The striking feature of the HNC results for ∆u in Table 2 is its
constant value, i.e. no dependence on Γ 1.   The immediate
consequence using Eq. 5 is that the deviation from linear mixing, ∆f ,
must have the form:

∆fHNC  =  alnΓ1 + b (8)

where the constants a and b  depend on Z2  and x2.   The HNC results
for ∆ f in Table 2 confirm this logarithmic dependence on Γ 1 very
closely  with a and b equal to the values of ∆u and ∆ f  at Γ 1 = 1.

The MC result for ∆u  at  Γ 1 = 1 is in near agreement with the
corresponding HNC result  (+.00134  ±  .00006 vs + .00124) as would
be expected.  As Γ 1 increases,  the MC results for ∆u decrease, and ∆u
can be modelled as:

∆uMC  =  a/(1 + cΓ1) (9)

This functional dependence on Γ 1 leads to a free energy deviation of
the form:

∆fMC  =  a{lnΓ1  -   ln(1 + cΓ1)/(1 + c)}  + b (10)

a and b can be taken as the MC values of ∆u and ∆f at  Γ 1 = 1 and c ≈
.034. This difference between HNC and MC is a consequence of the
increasing influence of the bridge diagrams as Γ 1  increases.

For estimation of the (∂/∂x)∆f term in Eq. 4  we need MC results
for the smallest possible value of x2  which for practical purposes is x
= .01 which corresponds to N2 = 10 and N1=990.   HNC and MC results
for Z2 and x = .01 are given in Table 3.

The HNC ∆u in Table 3 is again nearly nearly independent of Γ 1
and is about 1/5 of the ∆u in Table 2, as expected.  The MC results
for ∆u are marginal, probably because of the small number of Z2 = 2
particles.   The negative value of ∆uM C at Γ 1  = 10  is the only
negative value of ∆u for any mixture that we have run; it is well



Table 3,  HNC and MC results for  Z2 = 2 and x2 = .01

Γ1 HNC
umix, fm i x

HNC
∆umix, ∆fmix

MC
uMC

MC
∆uMC

1 - .58691 +.00026 - .58849 +.00039
- .45021 +.00052    ± .00006      ±.00008

5 -3 .82422 +.00025 -3 .85009 +.00009
-3 .27599 +.00094      ± .00012    ± .00006

1 0 -8 .12356 +.00026 -8 .18830 - .00010
-7 .23912 +.00111     ± .00013     ± .00019

2 0 -16 .91891 +.00025
-15 .19177 +.00509

4 0 -34 .99923 +.00022
-32 .00113 +.00143

within the error bars.   Based on HNC and MC results in Table 2  and
the indication in Table 3  that the coefficients a and b in Eq.8 are
proportional to x2,  the correction term needed for the thermonuclear
enhancement rate in Eq. 4  is:

(∂/∂x)∆f(Z2 = 2, x,  Γ1 = Γ )x -->0 ≈ .027lnΓ +  .048 (11)

4.  Comparison with OIIVH

Ogata, Iyetomi, Ichimaru, and Van Horn5   (OIIVH) have done a
thorough MC study of the binary ionic mixture for both fluid and
solid phases with results for  Z2/Z1 =  4/3, 3, and 5.  Their results for
the solid mixture phase give ∆umix as positive,  but for the fluid
phase they find  that  negative values of ∆umix  for several of their
mixture runs when  x = .01 and .05.  They find that their fluid ∆u
values decrease with increasing Γ 1 (for Γ 1 from 5 to 20).  They
assume a functional dependence of  ∆u  ∝  1/Γ 1,, which is far more
extreme than our MC results shown in Table 2 indicate.  Their energy
averages are perfomed over 7x106 configurations; our runs are
typically 200 to 400x 106 configurations.  Their negative values of ∆u
have significant consequences for both their phase diagrams and
their correction to the thermonuclear reaction rate.  Consequently it
is important to establish as clearly as possible the positive sign of ∆u
as well as the magnitude and dependence on Γ 1.  In Table I of OIIVH
results were presented for 30 fluid mixtures, half with Z2 =  3 and
half with Z2 = 5.  Of these 30 mixtures they obtained negative values



of ∆u  for six,  four for x = .01 and two for x = .02.  We repeated  12
of their mixture runs including the six for which the obtained the
negative values of ∆u, and a few other values.  Our results are shown
in Table 4.

Table 4.  MC Results for Z2 = 3  and Z2 = 5
DSC OIIVH

Z2 x Γ1    um i x       ∆u     um i x     ∆u
3 .01 1  -.61332 +.00099

± .00004 ± .00005
3 .01 1 0 -8 .45874 +.00060 -8.461±  .001 - .004

 ± . .00011 ± . .00018
3 .02 1 0 -8 .91927  +.00104

  ± .00011  ±.00018
3 .01 1 5 -13 .01204 + .00038 -13.012± .001 - .003

   ±  .00018 ± .00022
3 .01 2 0 -17 .60188 +.00097 -17.602±  .001 - .002

  ±  .00026 ± .00031
3 .05 1 - .77883 +.00450

± .00005 ± . .00007
3 .05 1 0 -10 .30053 +.0 0 2 0 6 -10.301± .001  .000

 ± . .00014 ± . .00021
3 .05 1 5 -15 .79068 +.00225 -15.791± .001 - .001

   ± . .00026 ± . .00030
3 .05 2 0 21.31834 +.00281 -21.319± .001 - .001

  ± . .00019 ± .00026
5 .01 1 - .68345 +.00276

± .00004 ± .00004
5 .01 1 0 -9 .20414 +.00144 -9.205± .001 - .002

± .00015 ± .00021
5 .05 1 0 -14 .02753 +.00688 -14.028± . .001 +.004

± . .00015 ± .00022
5 .1 1 0 -20 .05840 .01206 -20.057± . .001 +.011

± . .00017 ± .00028
5 .2 1 0 -32 .12399 +.01855 -32.126± .002 +.015

± .00023 ± . .00040
5 .5 1 0 -68 .33913 +.01967 -68.343± .003 +.015

± .00032 ± . .00084



It is clear from Table 4  that the MC umix results of OIIVH are
correct to the accuracy stated, and comparison with the more
accurate DSC results is satisfactory.  Yet the OIIVH results for ∆u are

generally lower than the DSC results by .001 to .004, and
consequently several of the OIIVH ∆u values are negative.  The

reason for this is that OIIVH computed their linear mixing results
using the an OCP fitting function by Ogata and Ichimaru6  (Eq. 11 in
OIIVH).   Their fitting function misses the actual OCP values in Table
1 at Γ  = 10, 15, and 20  by about .003 to .004.  This seemingly small
error is enough to give the spurious results for ∆u presented in
OIIVH and shown in Table 4.   Their elaborate fitting functions for ∆u
and ∆f  (Eqs. 12 and 16 in OIIVH)  are consequently incorrect.

5.  Conclusion
The primary conclusion from this analysis of our new MC ionic

mixture results is that the deviations are always small and posi t ive
and are in general agreement with the corresponding HNC results.
Our MC results for ∆u indicate a slight decrease with increasing Γ , but
certainly not  O(1/Γ )   as suggested by OIIVH.
Eq. 9 models  our  ∆u results for Z2  = 3 and 5 in Table 4 quite well.
Consequently ∆ f is well represented by Eq. 10  with the constants a

and b depending only on Z2 and x.   All the MC data can be
represented fairly well with Eqs. 9 and 10 using a and b as the
values of ∆u and ∆f  at Γ  = 1 from HNC.

The construction of phase diagrams for the binary ionic
mixture requires  ∆ f  for both fluid and solid phases.   The ∆ f results

of OIIVH for the fluid mixture are certainly incorrect because of their
spurious negative values of ∆u.   The immediate consequence of our
results for ∆ f is that the azeotropic corner of the OIIVH phase

diagrams goes away.  For Z2/Z1 < 1.4  the phase diagram is spindle
shaped in agreement with Segretain and Chabrier7.

With regard to the calculation of thermonuclear reaction rates
in stellar interiors we obtained an explicit estimate of the effect of
deviation from linear mixing, Eq. 11, which in general is only about
.1% of the total value of H(0).   The OIIVH  result for this correction is
closer to 2% in magnitude and of the incorrect sign  due to their



negative results for ∆u and hence also ∆ f.   For thermonuclear

reaction rate calculations  the Alastuey and Jancovici4  procedure
is accurate when the improved OCP results for f  (Eq. 6 and 7) are
used.

Work performed under the auspices of the U.S.  Department of
Energy by the Lawrence Livermore National Laboratory under
contract number W-7405-ENG-48.
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